Pulsed laser technologies play a critical role in nuclear security, including remote sensing, safeguards and emergency response. My group’s research focuses on the development of next-generation laser technologies with improved sensitivity, precision, and detection range for nuclear non-proliferation applications. This talk will cover recent work on emerging ultrafast technologies based on optical emission. Specifically, I will discuss new femtosecond laser ablation sampling approaches that enable remote isotopic and elemental sensing, improve laser beam propagation at extended distances, and preferentially enhance or impede chemical reactions for the detection of isotopes. Enabling laser technologies include femtosecond filamentation, ultrafast optical vortex beams, and femtosecond-induced weakly ionized air plasma channels to optimize detection distance and sensitivity.
Dr. Vassilia Zorba is a Physicist Staff Scientist and Group Leader for the Laser Technologies Group at the Lawrence Berkeley National Laboratory. She is also an Associate Adjunct Professor in the Department of Mechanical Engineering of the University of California, Berkeley. Her research interests include ultrafast laser-material interactions, non-linear optics, remote sensing, laser-induced plasma chemistry, and laser ablation-based chemical analysis for nuclear security and energy applications. Her previous work focused on femtosecond laser surface structuring technologies and biomimetic material functionalization. Dr. Zorba’s credits include more than 70 publications in peer-reviewed journals, numerous invited talks, and a 2011 R&D 100 Technology Award.
Zoom Link: https://berkeley.zoom.us/j/91568655249